Congruence Subgroup - Congruence Subgroups and Topological Groups

Congruence Subgroups and Topological Groups

Are all subgroups of finite index actually congruence subgroups? This is not in general true, and non-congruence subgroups exist. It is however an interesting question to understand when these examples are possible. This problem about the classical groups was resolved by Bass, Milnor & Serre (1967). .

It can be posed in topological terms: if Γ is some arithmetic group, there is a topology on Γ for which a base of neighbourhoods of {e} is the set of subgroups of finite index; and there is another topology defined in the same way using only congruence subgroups. We can ask whether those are the same topologies; equivalently, if they give rise to the same completions. The subgroups of finite index give rise to the completion of Γ as a pro-finite group. If there are essentially fewer congruence subgroups, the corresponding completion of Γ can be bigger (intuitively, there are fewer conditions for a Cauchy sequence to comply with). Therefore the problem can be posed as a relationship of two compact topological groups, with the question reduced to calculation of a possible kernel. The solution by Hyman Bass, Jean-Pierre Serre and John Milnor involved an aspect of algebraic number theory linked to K-theory.

The use of adele methods for automorphic representations (for example in the Langlands program) implicitly uses that kind of completion with respect to a congruence subgroup topology - for the reason that then all congruence subgroups can then be treated within a single group representation. This approach - using a group G(A) and its single quotient G(A)/G(Q) rather than looking at many G/Γ as a whole system - is now normal in abstract treatments.

Read more about this topic:  Congruence Subgroup

Famous quotes containing the words congruence and/or groups:

    As for butterflies, I can hardly conceive
    of one’s attending upon you; but to question
    the congruence of the complement is vain, if it exists.
    Marianne Moore (1887–1972)

    Only the groups which exclude us have magic.
    Mason Cooley (b. 1927)