Higher-dimensional Euclidean Space
A classical theorem of Joseph Liouville called Liouville's theorem shows the higher-dimensions have less varied conformal maps:
Any conformal map on a portion of Euclidean space of dimension greater than 2 can be composed from three types of transformation: a homothetic transformation, an isometry, and a special conformal transformation. (A special conformal transformation is the composition of a reflection and an inversion in a sphere.) Thus, the group of conformal transformations in spaces of dimension greater than 2 are much more restricted than the planar case, where the Riemann mapping theorem provides a large group of conformal transformations.
Read more about this topic: Conformal Map
Famous quotes containing the word space:
“Finally she grew quiet, and after that, coherent thought. With this, stalked through her a cold, bloody rage. Hours of this, a period of introspection, a space of retrospection, then a mixture of both. Out of this an awful calm.”
—Zora Neale Hurston (18911960)