Conformal Group

In mathematics, the conformal group is the group of transformations from a space to itself that preserve all angles within the space. More formally, it is the group of transformations that preserve the conformal geometry of the space. Several specific conformal groups are particularly important:

  • The conformal orthogonal group. If V is a vector space with a quadratic form Q, then the conformal orthogonal group CO(V,Q) is the group of linear transformations T of V such that for all x in V there exists a scalar λ such that
The conformal orthogonal group is equal to the orthogonal group times the group of dilations.
  • The conformal group of the sphere. The group of conformal transformations of the n-sphere is generated by the inversions in circles. This group is also known as the Möbius group.

All conformal groups are Lie Groups.

Famous quotes containing the word group:

    [The Republicans] offer ... a detailed agenda for national renewal.... [On] reducing illegitimacy ... the state will use ... funds for programs to reduce out-of-wedlock pregnancies, to promote adoption, to establish and operate children’s group homes, to establish and operate residential group homes for unwed mothers, or for any purpose the state deems appropriate. None of the taxpayer funds may be used for abortion services or abortion counseling.
    Newt Gingrich (b. 1943)