Conformal Group

In mathematics, the conformal group is the group of transformations from a space to itself that preserve all angles within the space. More formally, it is the group of transformations that preserve the conformal geometry of the space. Several specific conformal groups are particularly important:

  • The conformal orthogonal group. If V is a vector space with a quadratic form Q, then the conformal orthogonal group CO(V,Q) is the group of linear transformations T of V such that for all x in V there exists a scalar λ such that
The conformal orthogonal group is equal to the orthogonal group times the group of dilations.
  • The conformal group of the sphere. The group of conformal transformations of the n-sphere is generated by the inversions in circles. This group is also known as the Möbius group.

All conformal groups are Lie Groups.

Famous quotes containing the word group:

    Belonging to a group can provide the child with a variety of resources that an individual friendship often cannot—a sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social life—of inclusion and exclusion, conformity and independence.
    Zick Rubin (20th century)