In conformal differential geometry, a conformal connection is a Cartan connection on an n-dimensional manifold M arising as a deformation of the Klein geometry given by the celestial n-sphere, viewed as the homogeneous space
- O+(n+1,1)/P
where P is the stabilizer of a fixed null line through the origin in Rn+2, in the orthochronous Lorentz group O+(n+1,1) in n+2 dimensions. Any manifold equipped with a conformal structure has a canonical conformal connection called the normal Cartan connection.
Read more about Conformal Connection: Formal Definition
Famous quotes containing the word connection:
“One must always maintain ones connection to the past and yet ceaselessly pull away from it. To remain in touch with the past requires a love of memory. To remain in touch with the past requires a constant imaginative effort.”
—Gaston Bachelard (18841962)