Basic Properties
Let (Ω, M, P) be a probability space, and let N be a σ-subalgebra of M.
- Conditioning with respect to N is linear on the space of integrable real random variables.
- More generally, for every integrable N–measurable random variable Y on Ω.
- for all B ∈ N and every integrable random variable X on Ω.
- Jensen's inequality holds: If ƒ is a convex function, then
- Conditioning is a contractive projection
-
- for any s ≥ 1.
Read more about this topic: Conditional Expectation
Famous quotes containing the words basic and/or properties:
“When you realize how hard it is to know the truth about yourself, you understand that even the most exhaustive and well-meaning autobiography, determined to tell the truth, represents, at best, a guess. There have been times in my life when I felt incredibly happy. Life was full. I seemed productive. Then I thought,Am I really happy or am I merely masking a deep depression with frantic activity? If I dont know such basic things about myself, who does?”
—Phyllis Rose (b. 1942)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)