Definition
If is the entropy of the variable conditioned on the variable taking a certain value, then is the result of averaging over all possible values that may take.
Given discrete random variable with support and with support, the conditional entropy of given is defined as:
Note: The supports of X and Y can be replaced by their domains if it is understood that should be treated as being equal to zero.
if and only if the value of is completely determined by the value of . Conversely, if and only if and are independent random variables.
Read more about this topic: Conditional Entropy
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)