Computable Number - Can Computable Numbers Be Used Instead of The Reals?

Can Computable Numbers Be Used Instead of The Reals?

The computable numbers include many of the specific real numbers which appear in practice, including all real algebraic numbers, as well as e, and many other transcendental numbers. Though the computable reals exhaust those reals we can calculate or approximate, the assumption that all reals are computable leads to substantially different conclusions about the real numbers. The question naturally arises of whether it is possible to dispose of the full set of reals and use computable numbers for all of mathematics. This idea is appealing from a constructivist point of view, and has been pursued by what Bishop and Richman call the Russian school of constructive mathematics.

To actually develop analysis over computable numbers, some care must be taken. For example, if one uses the classical definition of a sequence, the set of computable numbers is not closed under the basic operation of taking the supremum of a bounded sequence (for example, consider a Specker sequence). This difficulty is addressed by considering only sequences which have a computable modulus of convergence. The resulting mathematical theory is called computable analysis.

Read more about this topic:  Computable Number

Famous quotes containing the word numbers:

    All experience teaches that, whenever there is a great national establishment, employing large numbers of officials, the public must be reconciled to support many incompetent men; for such is the favoritism and nepotism always prevailing in the purlieus of these establishments, that some incompetent persons are always admitted, to the exclusion of many of the worthy.
    Herman Melville (1819–1891)