Computable Sets and Relations
A set A of natural numbers is called computable (synonyms: recursive, decidable) if there is a computable, total function f such that for any natural number n, f(n) = 1 if n is in A and f(n) = 0 if n is not in A.
A set of natural numbers is called computably enumerable (synonyms: recursively enumerable, semidecidable) if there is a computable function f such that for each number n, f(n) is defined if and only if n is in the set. Thus a set is computably enumerable if and only if it is the domain of some computable function. The word enumerable is used because the following are equivalent for a nonempty subset B of the natural numbers:
- B is the domain of a computable function.
- B is the range of a total computable function. If B is infinite then the function can be assumed to be injective.
If a set B is the range of a function f then the function can be viewed as an enumeration of B, because the list f(0), f(1), ... will include every element of B.
Because each finitary relation on the natural numbers can be identified with a corresponding set of finite sequences of natural numbers, the notions of computable relation and computably enumerable relation can be defined from their analogues for sets.
Read more about this topic: Computable Function
Famous quotes containing the words sets and/or relations:
“Wilson adventured for the whole of the human race. Not as a servant, but as a champion. So pure was this motive, so unflecked with anything that his worst enemies could find, except the mildest and most excusable, a personal vanity, practically the minimum to be human, that in a sense his adventure is that of humanity itself. In Wilson, the whole of mankind breaks camp, sets out from home and wrestles with the universe and its gods.”
—William Bolitho (18901930)
“Consciousness, we shall find, is reducible to relations between objects, and objects we shall find to be reducible to relations between different states of consciousness; and neither point of view is more nearly ultimate than the other.”
—T.S. (Thomas Stearns)