Composition of Relations - Definition

Definition

If and are two binary relations, then their composition is the relation

In other words, is defined by the rule that says if and only if there is an element such that (i.e. and ).

In particular fields, authors might denote by RS what is defined here to be SR. The convention chosen here is such that function composition (with the usual notation) is obtained as a special case, when R and S are functional relations. Some authors prefer to write and explicitly when necessary, depending whether the left or the right relation is the first one applied.

A further variation encountered in computer science is the Z notation: is used to denote the traditional (right) composition, but ⨾ (a fat semicolon with Unicode code point U+2A3E) denotes left composition. This use of semicolon coincides with the notation for function composition used (mostly by computer scientists) in Category theory.

The binary relations are sometimes regarded as the morphisms in a category Rel which has the sets as objects. In Rel, composition of morphisms is exactly composition of relations as defined above. The category Set of sets is a subcategory of Rel that has the same objects but fewer morphisms. A generalization of this is found in the theory of allegories.

Read more about this topic:  Composition Of Relations

Famous quotes containing the word definition:

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)