Degrees
Shephard and Todd proved that a finite group acting on a complex vector space is a complex reflection group if and only if its ring of invariants is a polynomial ring (Chevalley–Shephard–Todd theorem). For being the rank of the reflection group, the degrees of the generators of the ring of invariants are called degrees of W and are listed in the column above headed "degrees". They also showed that many other invariants of the group are determined by the degrees as follows:
- The center of an irreducible reflection group is cyclic of order equal to the greatest common divisor of the degrees.
- The order of a complex reflection group is the product of its degrees.
- The number of reflections is the sum of the degrees minus the rank.
- An irreducible complex reflection group comes from a real reflection group if and only if it has an invariant of degree 2.
- The degrees di satisfy the formula
Read more about this topic: Complex Reflection Group
Famous quotes containing the word degrees:
“Gradually we come to admit that Shakespeare understands a greater extent and variety of human life than Dante; but that Dante understands deeper degrees of degradation and higher degrees of exaltation.”
—T.S. (Thomas Stearns)
“The political truths declared in that solemn manner acquire by degrees the character of fundamental maxims of free Government, and as they become incorporated with national sentiment, counteract the impulses of interest and passion.”
—James Madison (17511836)
“For the profit of travel: in the first place, you get rid of a few prejudices.... The prejudiced against color finds several hundred millions of people of all shades of color, and all degrees of intellect, rank, and social worth, generals, judges, priests, and kings, and learns to give up his foolish prejudice.”
—Herman Melville (18191891)