Complex Multiplication - Abstract Theory of Endomorphisms

Abstract Theory of Endomorphisms

The ring of endomorphisms of an elliptic curves can be of one of three forms:the integers Z; an order in an imaginary quadratic number field; or an order in a definite quaternion algebra over Q.

When the field of definition is a finite field, there are always non-trivial endomorphisms of an elliptic curve, coming from the Frobenius map, so the complex multiplication case is in a sense typical (and the terminology isn't often applied). But when the base field is a number field, complex multiplication is the exception. It is known that, in a general sense, the case of complex multiplication is the hardest to resolve for the Hodge conjecture.

Read more about this topic:  Complex Multiplication

Famous quotes containing the words abstract and/or theory:

    “If our minds could get hold of one abstract truth, they would be immortal so far as that truth is concerned. My trouble is to find out how we can get hold of the truth at all.”
    Henry Brooks Adams (1838–1918)

    There is in him, hidden deep-down, a great instinctive artist, and hence the makings of an aristocrat. In his muddled way, held back by the manacles of his race and time, and his steps made uncertain by a guiding theory which too often eludes his own comprehension, he yet manages to produce works of unquestionable beauty and authority, and to interpret life in a manner that is poignant and illuminating.
    —H.L. (Henry Lewis)