Complex Measure - The Space of Complex Measures

The Space of Complex Measures

The sum of two complex measures is a complex measure, as is the product of a complex measure by a complex number. That is to say, the set of all complex measures on a measure space (X, Σ) forms a vector space. Moreover, the total variation ||μ|| defined as

is a norm in respect to which the space of complex measures is a Banach space.

Read more about this topic:  Complex Measure

Famous quotes containing the words space, complex and/or measures:

    To play is nothing but the imitative substitution of a pleasurable, superfluous and voluntary action for a serious, necessary, imperative and difficult one. At the cradle of play as well as of artistic activity there stood leisure, tedium entailed by increased spiritual mobility, a horror vacui, the need of letting forms no longer imprisoned move freely, of filling empty time with sequences of notes, empty space with sequences of form.
    Max J. Friedländer (1867–1958)

    Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the “correct” explanation is not quite so important as conveying a willingness to discuss the subject. Become an “askable parent.”
    Ruth Formanek (20th century)

    Those who, while they disapprove of the character and measures of a government, yield to it their allegiance and support are undoubtedly its most conscientious supporters, and so frequently the most serious obstacles to reform.
    Henry David Thoreau (1817–1862)