Completeness (statistics) - Definition

Definition

Consider a random variable X whose probability distribution belongs to a parametric family of probability distributions Pθ parametrized by θ.

Formally, a statistic s is a measurable function of X; thus, a statistic s is evaluated on a random variable X, taking the value s(X), which is itself a random variable. A given realization of the random variable X(ω) is a data-point (datum), on which the statistic s takes the value s(X(ω)).

The statistic s is said to be complete for the distribution of X if for every measurable function g (which must be independent of θ) the following implication holds:

E(g(s(X))) = 0 for all θ implies that Pθ(g(s(X)) = 0) = 1 for all θ.

The statistic s is said to be boundedly complete if the implication holds for all bounded functions g.

Read more about this topic:  Completeness (statistics)

Famous quotes containing the word definition:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)