In mathematics, in particular in algebraic geometry, a complete algebraic variety is an algebraic variety X, such that for any variety Y the projection morphism
- X × Y → Y
is a closed map, i.e. maps closed sets onto closed sets.
The most common example of a complete variety is a projective variety, but there do exist complete and non-projective varieties in dimensions 2 and higher. The first examples of non-projective complete varieties were given by Masayoshi Nagata and Heisuke Hironaka. An affine space of positive dimension is not complete.
The morphism taking a complete variety to a point is a proper morphism, in the sense of scheme theory. An intuitive justification of 'complete', in the sense of 'no missing points', can be given on the basis of the valuative criterion of properness, which goes back to Claude Chevalley.
Famous quotes containing the words complete and/or variety:
“I am black: I am the incarnation of a complete fusion with the world, an intuitive understanding of the earth, an abandonment of my ego in the heart of the cosmos, and no white man, no matter how intelligent he may be, can ever understand Louis Armstrong and the music of the Congo.”
—Frantz Fanon (19251961)
“In the tale properwhere there is no space for development of character or for great profusion and variety of incidentmere construction is, of course, far more imperatively demanded than in the novel.”
—Edgar Allan Poe (18091849)