Complete Metric Space - Topologically Complete Spaces

Topologically Complete Spaces

Note that completeness is a property of the metric and not of the topology, meaning that a complete metric space can be homeomorphic to a non-complete one. An example is given by the real numbers, which are complete but homeomorphic to the open interval (0, 1), which is not complete. Another example is given by the irrational numbers, which are not complete as a subspace of the real numbers but are homeomorphic to NN (see the sequence example in Examples above).

In topology one considers topologically complete (or completely metrizable) spaces, spaces for which there exists at least one complete metric inducing the given topology. Completely metrizable spaces can be characterized as those spaces that can be written as an intersection of countably many open subsets of some complete metric space. Since the conclusion of the Baire category theorem is purely topological, it applies to these spaces as well.

A topological space homeomorphic to a separable complete metric space is called a Polish space.

Read more about this topic:  Complete Metric Space

Famous quotes containing the words complete and/or spaces:

    To throw obstacles in the way of a complete education is like putting out the eyes; to deny the rights of property is like cutting off the hands. To refuse political equality is like robbing the ostracized of all self-respect, of credit in the market place, of recompense in the world of work, of a voice in choosing those who make and administer the law, a choice in the jury before whom they are tried, and in the judge who decides their punishment.
    Elizabeth Cady Stanton (1815–1902)

    Every true man is a cause, a country, and an age; requires infinite spaces and numbers and time fully to accomplish his design;—and posterity seem to follow his steps as a train of clients.
    Ralph Waldo Emerson (1803–1882)