General Position
For more refined questions, the nature of the intersection has to be addressed more closely. The hypersurfaces may be required to satisfy a transversality condition (like their tangent spaces being in general position at intersection points). The intersection may be scheme-theoretic, in other words here the homogeneous ideal generated by the Fi(X0, ..., Xn) may be required to be the defining ideal of V, and not just have the correct radical. In commutative algebra, the complete intersection condition is translated into regular sequence terms, allowing the definition of local complete intersection, or after some localization an ideal has defining regular sequences.
Read more about this topic: Complete Intersection
Famous quotes containing the words general and/or position:
“No doubt, the short distance to which you can see in the woods, and the general twilight, would at length react on the inhabitants, and make them savages. The lakes also reveal the mountains, and give ample scope and range to our thought.”
—Henry David Thoreau (18171862)
“Beauty ought to look a little surprised: it is the emotion that best suits her face.... The beauty who does not look surprised, who accepts her position as her dueshe reminds us too much of a prima donna.”
—E.M. (Edward Morgan)