Definition
The complete homogeneous symmetric polynomial of degree k in variables X1, ..., Xn, written hk for k = 0, 1, 2, ..., is the sum of all monomials of total degree k in the variables. Formally,
The formula can also be written as:
Indeed, lp is just multiplicity of p in sequence ik.
The first few of these polynomials are
Thus, for each nonnegative integer, there exists exactly one complete homogeneous symmetric polynomial of degree in variables.
Another way of rewriting the definition is to take summation over all sequences ik, without condition of ordering :
here mp is the multiplicity of number p in the sequence ik.
For example
The polynomial ring formed by taking all integral linear combinations of products of the complete homogeneous symmetric polynomials is a commutative ring.
Read more about this topic: Complete Homogeneous Symmetric Polynomial
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)