Properties of Complete Boolean Algebras
- Sikorski's extension theorem states that
if A is a subalgebra of a Boolean algebra B, then any homomorphism from A to a complete Boolean algebra C can be extended to a morphism from B to C.
- Every subset of a complete Boolean algebra has a supremum, by definition; it follows that every subset also has an infimum (greatest lower bound).
- For a complete boolean algebra both infinite distributive laws hold.
- For a complete boolean algebra infinite de-Morgan's laws hold.
Read more about this topic: Complete Boolean Algebra
Famous quotes containing the words properties of, properties and/or complete:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“I want relations which are not purely personal, based on purely personal qualities; but relations based upon some unanimous accord in truth or belief, and a harmony of purpose, rather than of personality. I am weary of personality.... Let us be easy and impersonal, not forever fingering over our own souls, and the souls of our acquaintances, but trying to create a new life, a new common life, a new complete tree of life from the roots that are within us.”
—D.H. (David Herbert)