Commutative Ring - Ring Homomorphisms

Ring Homomorphisms

As usual in algebra, a function f between two objects that respects the structures of the objects in question is called homomorphism. In the case of rings, a ring homomorphism is a map f : RS such that

f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(1) = 1.

These conditions ensure f(0) = 0, but the requirement that the multiplicative identity element 1 is preserved under f would not follow from the two remaining properties. In such a situation S is also called an R-algebra, by understanding that s in S may be multiplied by some r of R, by setting

r · s := f(r) · s.

The kernel and image of f are defined by ker (f) = {rR, f(r) = 0} and im (f) = f(R) = {f(r), rR}. The kernel is an ideal of R, and the image is a subring of S.

Read more about this topic:  Commutative Ring

Famous quotes containing the word ring:

    I was exceedingly interested by this phenomenon, and already felt paid for my journey. It could hardly have thrilled me more if it had taken the form of letters, or of the human face. If I had met with this ring of light while groping in this forest alone, away from any fire, I should have been still more surprised. I little thought that there was such a light shining in the darkness of the wilderness for me.
    Henry David Thoreau (1817–1862)