Ring Homomorphisms
As usual in algebra, a function f between two objects that respects the structures of the objects in question is called homomorphism. In the case of rings, a ring homomorphism is a map f : R → S such that
- f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(1) = 1.
These conditions ensure f(0) = 0, but the requirement that the multiplicative identity element 1 is preserved under f would not follow from the two remaining properties. In such a situation S is also called an R-algebra, by understanding that s in S may be multiplied by some r of R, by setting
- r · s := f(r) · s.
The kernel and image of f are defined by ker (f) = {r ∈ R, f(r) = 0} and im (f) = f(R) = {f(r), r ∈ R}. The kernel is an ideal of R, and the image is a subring of S.
Read more about this topic: Commutative Ring
Famous quotes containing the word ring:
“There is no magic decoding ring that will help us read our young adolescents feelings. Rather, what we need to do is hold out our antennae in the hope that well pick up the right signals.”
—The Lions Clubs International and the Quest Nation. The Surprising Years, III, ch.4 (1985)