Collision Problem - Classical Solution

Classical Solution

Solving the 2-to-1 version deterministically requires queries, and in general distinguishing r-to-1 functions from 1-to-1 functions requires queries.

This is a straightforward application of the pigeonhole principle: if a function is r-to-1, then after queries we are guaranteed to have found a collision. If a function is 1-to-1, then no collision exists. Thus, queries suffice. If we are unlucky, then the first queries could return distinct answers, so queries is also necessary.

If we allow randomness, the problem is easier. By the birthday paradox, if we choose (distinct) queries at random, then with high probability we find a collision in any fixed 2-to-1 function after queries.

Read more about this topic:  Collision Problem

Famous quotes containing the words classical and/or solution:

    Et in Arcadia ego.
    [I too am in Arcadia.]
    Anonymous, Anonymous.

    Tomb inscription, appearing in classical paintings by Guercino and Poussin, among others. The words probably mean that even the most ideal earthly lives are mortal. Arcadia, a mountainous region in the central Peloponnese, Greece, was the rustic abode of Pan, depicted in literature and art as a land of innocence and ease, and was the title of Sir Philip Sidney’s pastoral romance (1590)

    To the questions of the officiously meddling police Falter replied absently and tersely; but, when he finally grew tired of this pestering, he pointed out that, having accidentally solved “the riddle of the universe,” he had yielded to artful exhortation and shared that solution with his inquisitive interlocutor, whereupon the latter had died of astonishment.
    Vladimir Nabokov (1899–1977)