Collatz Conjecture - Methods of Proof

Methods of Proof

There have been many methods of attack on the problem. For example, let A and B be integers, A being how many times the "3n+1" rule is used in a cycle, and B being how many times the "n/2" rule is used. Let x be the lowest number in a cycle then, regardless of what order the rules are used, we have:


\frac{3^A}{2^B}x + C = x

where C is the "excess" caused by the "+1" in the rule, and can be shown to be bigger than:


C \ge \frac{3^{A-1}}{2^B}

using geometric progression. Rearranging shows that the lowest number in the cycle satisfies:


x \ge \frac{3^{A-1}}{2^B-3^A}

which gives a lower bound for the lowest number in a cycle for a given cycle length. For large cycles the fraction 3A/2B would be expected to tend to 1, so that the lower bound would be large.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words methods of, methods and/or proof:

    I believe in women; and in their right to their own best possibilities in every department of life. I believe that the methods of dress practiced among women are a marked hindrance to the realization of these possibilities, and should be scorned or persuaded out of society.
    Elizabeth Stuart Phelps (1844–1911)

    A writer who writes, “I am alone” ... can be considered rather comical. It is comical for a man to recognize his solitude by addressing a reader and by using methods that prevent the individual from being alone. The word alone is just as general as the word bread. To pronounce it is to summon to oneself the presence of everything the word excludes.
    Maurice Blanchot (b. 1907)

    a meek humble Man of modest sense,
    Who preaching peace does practice continence;
    Whose pious life’s a proof he does believe,
    Mysterious truths, which no Man can conceive.
    John Wilmot, 2d Earl Of Rochester (1647–1680)