Statement
In mathematical terms the problem can be stated:
- Given positive integers a1, a2, ..., an such that gcd(a1, a2, ..., an) = 1, find the largest integer that cannot be expressed as an integer conical combination of these numbers, i.e., as a sum
- k1a1 + k2a2 + ยทยทยท + knan,
- where k1, k2, ..., kn are non-negative integers.
This largest integer is called the Frobenius number of the set { a1, a2, ..., an }, and is usually denoted by g(a1, a2, ..., an).
The requirement that the greatest common divisor (GCD) equal 1 is necessary in order for the Frobenius number to exist. If the GCD were not 1, every integer that is not a multiple of the GCD would be inexpressible as a linear, let alone conical, combination of the set, and therefore there would not be a largest such number. For example, if you had two types of coins valued at 4 cents and 6 cents, the GCD would equal 2, and there would be no way to combine any number of such coins to produce a sum which was an odd number. On the other hand, whenever the GCD equals 1, the set of integers that cannot be expressed as a conical combination of { a1, a2, ..., an } is bounded according to Schur's theorem, and therefore the Frobenius number exists.
Read more about this topic: Coin Problem
Famous quotes containing the word statement:
“A sentence is made up of words, a statement is made in words.... Statements are made, words or sentences are used.”
—J.L. (John Langshaw)
“The new statement will comprise the skepticisms, as well as the faiths of society, and out of unbeliefs a creed shall be formed. For, skepticisms are not gratuitous or lawless, but are limitations of the affirmative statement, and the new philosophy must take them in, and make affirmations outside of them, just as much as must include the oldest beliefs.”
—Ralph Waldo Emerson (18031882)
“If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.”
—J.L. (John Langshaw)