Coherent Topology - Definition

Definition

Let X be a topological space and let C = {Cα : α ∈ A} be a family of subspaces of X (typically C will be a cover of X). Then X is said to be coherent with C (or determined by C) if X has the final topology coinduced by the inclusion maps

By definition, this is the finest topology on X for which the inclusion maps are continuous.

Equivalently, X is coherent with C if either of the following conditions holds:

  • A subset U is open in X if and only if UCα is open in Cα for each α ∈ A.
  • A subset U is closed in X if and only if UCα is closed in Cα for each α ∈ A.

Given a topological space X and any family of subspaces C there is unique topology on X which is coherent with C. This topology will, in general, be finer than the given topology on X.

Read more about this topic:  Coherent Topology

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)