Cofinal Set of Subsets
A particular but important case is given if A is a subset of the power set P(E) of some set E, ordered by reverse inclusion (⊃). Given this ordering of A, a subset B of A is cofinal in A if for every a ∈ A there is a b ∈ B such that a ⊃ b.
For example, if E is a group, A could be the set of normal subgroups of finite index. Then, cofinal subsets of A (or sequences, or nets) are used to define Cauchy sequences and the completion of the group.
Read more about this topic: Cofinal (mathematics)
Famous quotes containing the word set:
“Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, natures laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through natures universal laws and rules.”
—Baruch (Benedict)