CMA-ES - Example Code in Matlab/Octave

Example Code in Matlab/Octave

function xmin=purecmaes % (mu/mu_w, lambda)-CMA-ES % -------------------- Initialization -------------------------------- % User defined input parameters (need to be edited) strfitnessfct = 'frosenbrock'; % name of objective/fitness function N = 20; % number of objective variables/problem dimension xmean = rand(N,1); % objective variables initial point sigma = 0.5; % coordinate wise standard deviation (step size) stopfitness = 1e-10; % stop if fitness < stopfitness (minimization) stopeval = 1e3*N^2; % stop after stopeval number of function evaluations % Strategy parameter setting: Selection lambda = 4+floor(3*log(N)); % population size, offspring number mu = lambda/2; % number of parents/points for recombination weights = log(mu+1/2)-log(1:mu)'; % muXone array for weighted recombination mu = floor(mu); weights = weights/sum(weights); % normalize recombination weights array mueff=sum(weights)^2/sum(weights.^2); % variance-effectiveness of sum w_i x_i % Strategy parameter setting: Adaptation cc = (4+mueff/N) / (N+4 + 2*mueff/N); % time constant for cumulation for C cs = (mueff+2) / (N+mueff+5); % t-const for cumulation for sigma control c1 = 2 / ((N+1.3)^2+mueff); % learning rate for rank-one update of C cmu = 2 * (mueff-2+1/mueff) / ((N+2)^2+mueff); % and for rank-mu update damps = 1 + 2*max(0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma % usually close to 1 % Initialize dynamic (internal) strategy parameters and constants pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C and sigma B = eye(N,N); % B defines the coordinate system D = ones(N,1); % diagonal D defines the scaling C = B * diag(D.^2) * B'; % covariance matrix C invsqrtC = B * diag(D.^-1) * B'; % C^-1/2 eigeneval = 0; % track update of B and D chiN=N^0.5*(1-1/(4*N)+1/(21*N^2)); % expectation of % ||N(0,I)|| == norm(randn(N,1)) % -------------------- Generation Loop -------------------------------- counteval = 0; % the next 40 lines contain the 20 lines of interesting code while counteval < stopeval % Generate and evaluate lambda offspring for k=1:lambda, arx(:,k) = xmean + sigma * B * (D .* randn(N,1)); % m + sig * Normal(0,C) arfitness(k) = feval(strfitnessfct, arx(:,k)); % objective function call counteval = counteval+1; end % Sort by fitness and compute weighted mean into xmean = sort(arfitness); % minimization xold = xmean; xmean = arx(:,arindex(1:mu))*weights; % recombination, new mean value % Cumulation: Update evolution paths ps = (1-cs)*ps ... + sqrt(cs*(2-cs)*mueff) * invsqrtC * (xmean-xold) / sigma; hsig = norm(ps)/sqrt(1-(1-cs)^(2*counteval/lambda))/chiN < 1.4 + 2/(N+1); pc = (1-cc)*pc ... + hsig * sqrt(cc*(2-cc)*mueff) * (xmean-xold) / sigma; % Adapt covariance matrix C artmp = (1/sigma) * (arx(:,arindex(1:mu))-repmat(xold,1,mu)); C = (1-c1-cmu) * C ... % regard old matrix + c1 * (pc*pc' ... % plus rank one update + (1-hsig) * cc*(2-cc) * C) ... % minor correction if hsig==0 + cmu * artmp * diag(weights) * artmp'; % plus rank mu update % Adapt step size sigma sigma = sigma * exp((cs/damps)*(norm(ps)/chiN - 1)); % Decomposition of C into B*diag(D.^2)*B' (diagonalization) if counteval - eigeneval > lambda/(c1+cmu)/N/10 % to achieve O(N^2) eigeneval = counteval; C = triu(C) + triu(C,1)'; % enforce symmetry = eig(C); % eigen decomposition, B==normalized eigenvectors D = sqrt(diag(D)); % D is a vector of standard deviations now invsqrtC = B * diag(D.^-1) * B'; end % Break, if fitness is good enough or condition exceeds 1e14, better termination methods are advisable if arfitness(1) <= stopfitness || max(D) > 1e7 * min(D) break; end end % while, end generation loop xmin = arx(:, arindex(1)); % Return best point of last iteration. % Notice that xmean is expected to be even % better. % --------------------------------------------------------------- function f=frosenbrock(x) if size(x,1) < 2 error('dimension must be greater one'); end f = 100*sum((x(1:end-1).^2 - x(2:end)).^2) + sum((x(1:end-1)-1).^2);

Read more about this topic:  CMA-ES

Famous quotes containing the word code:

    Acknowledge your will and speak to us all, “This alone is what I will to be!” Hang your own penal code up above you: we want to be its enforcers!
    Friedrich Nietzsche (1844–1900)