Classical Modular Curve - Galois Theory of The Modular Curve

Galois Theory of The Modular Curve

The Galois theory of the modular curve was investigated by Erich Hecke. Considered as a polynomial in x with coefficients in Z, the modular equation Φ0(n) is a polynomial of degree ψ(n) in x, whose roots generate a Galois extension of Q(y). In the case of X0(p) with p prime, where the characteristic of the field is not p, the Galois group of

Q(x, y)/Q(y)

is PGL2(p), the projective general linear group of linear fractional transformations of the projective line of the field of p elements, which has p+1 points, the degree of X0(p).

This extension contains an algebraic extension

of Q. If we extend the field of constants to be F, we now have an extension with Galois group PSL2(p), the projective special linear group of the field with p elements, which is a finite simple group. By specializing y to a specific field element, we can, outside of a thin set, obtain an infinity of examples of fields with Galois group PSL2(p) over F, and PGL2(p) over Q.

When n is not a prime, the Galois groups can be analyzed in terms of the factors of n as a wreath product.

Read more about this topic:  Classical Modular Curve

Famous quotes containing the words theory and/or curve:

    Thus the theory of description matters most.
    It is the theory of the word for those
    For whom the word is the making of the world,
    The buzzing world and lisping firmament.
    Wallace Stevens (1879–1955)

    Nothing ever prepares a couple for having a baby, especially the first one. And even baby number two or three, the surprises and challenges, the cosmic curve balls, keep on coming. We can’t believe how much children change everything—the time we rise and the time we go to bed; the way we fight and the way we get along. Even when, and if, we make love.
    Susan Lapinski (20th century)