Class Field Theory

In mathematics, class field theory is a major branch of algebraic number theory that studies abelian extensions of number fields and function fields of curves over finite fields and arithmetic properties of such abelian extensions. A general name for such fields is global fields, or one-dimensional global fields.

The theory takes its name from the fact that it provides a one-to-one correspondence between finite abelian extensions of a fixed global field and appropriate classes of ideals of the field or open subgroups of the idele class group of the field. For example, the Hilbert class field, which is the maximal unramified abelian extension of a number field, corresponds to a very special class of ideals. Class field theory also includes a reciprocity homomorphism which acts from the idele class group of a global field, i.e. the quotient of the ideles by the multiplicative group of the field, to the Galois group of the maximal abelian extension of the global field. Each open subgroup of the idele class group of a global field is the image with respect to the norm map from the corresponding class field extension down to the global field.

A standard method since the 1930s is to develop local class field theory which describes abelian extensions of completions of a global field, and then use it to construct global class field theory.

Read more about Class Field Theory:  Formulation in Contemporary Language, Prime Ideals, The Role of Class Field Theory in Algebraic Number Theory, Generalizations of Class Field Theory, History

Famous quotes containing the words class, field and/or theory:

    The great disadvantage, and advantage, of the small urban bourgeois is his limited outlook. He sees the world as a middle- class world, and everything outside these limits is either laughable or slightly wicked.
    George Orwell (1903–1950)

    I would say that deconstruction is affirmation rather than questioning, in a sense which is not positive: I would distinguish between the positive, or positions, and affirmations. I think that deconstruction is affirmative rather than questioning: this affirmation goes through some radical questioning, but it is not questioning in the field of analysis.
    Jacques Derrida (b. 1930)

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)