Relationship To Classical Logic
The schema form of CT shown above, when added to constructive systems such as HA, implies the negation of the law of the excluded middle. As an example, it is a classical tautology that every Turing machine either halts or does not halt on a given input. Assuming this tautology, in sufficiently strong systems such as HA it is possible to form a function h that takes a code for a Turing machine and returns 1 if the machine halts and 0 if it does not halt. Then, from Church's Thesis one would conclude that this function is itself computable, but this is known to be false, because the Halting problem is not computably solvable. Thus HA and CT disproves some consequence of the law of the excluded middle.
The "single axiom" form of CT mentioned above,
- ,
quantifies over functions and says that every function f is computable (with an index e). This axiom is consistent with some weak classical systems that do not have the strength to form functions such as the function f of the previous paragraph. For example, the weak classical system is consistent with this single axiom, because has a model in which every function is computable. However, the single-axiom form becomes inconsistent with the law of the excluded middle in any system that has sufficient axioms to construct functions such as the function h in the previous paragraph.
Read more about this topic: Church's Thesis (constructive Mathematics)
Famous quotes containing the words relationship to, relationship, classical and/or logic:
“Sometimes in our relationship to another human being the proper balance of friendship is restored when we put a few grains of impropriety onto our own side of the scale.”
—Friedrich Nietzsche (18441900)
“Whatever may be our just grievances in the southern states, it is fitting that we acknowledge that, considering their poverty and past relationship to the Negro race, they have done remarkably well for the cause of education among us. That the whole South should commit itself to the principle that the colored people have a right to be educated is an immense acquisition to the cause of popular education.”
—Fannie Barrier Williams (18551944)
“Several classical sayings that one likes to repeat had quite a different meaning from the ones later times attributed to them.”
—Johann Wolfgang Von Goethe (17491832)
“Somebody who should have been born
is gone.
Yes, woman, such logic will lead
to loss without death. Or say what you meant,
you coward . . . this baby that I bleed.”
—Anne Sexton (19281974)