Chirality (mathematics)

Chirality (mathematics)

In geometry, a figure is chiral (and said to have chirality) if it is not identical to its mirror image, or, more precisely, if it cannot be mapped to its mirror image by rotations and translations alone. For example, a right shoe is different from a left shoe, and clockwise is different from counterclockwise.

A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'. A non-chiral figure is called achiral or amphichiral.

The helix (and by extension a spun string, a screw, a propeller, etc.) and Möbius strip are chiral two-dimensional objects in three-dimensional ambient space. The J, L, S and Z-shaped tetrominoes of the popular video game Tetris also exhibit chirality, but only in a two-dimensional space.

Many other familiar objects exhibit the same chiral symmetry of the human body, such as gloves, glasses (for two lenses of different prescription), and shoes. A similar notion of chirality is considered in knot theory, as explained below.

Some chiral three-dimensional objects, such as the helix, can be assigned a right or left handedness, according to the right-hand rule.

Read more about Chirality (mathematics):  Chirality and Symmetry Group, Chirality in Three Dimensions, Chirality in Two Dimensions, Knot Theory