Chemical Shift - Factors Causing Chemical Shifts

Factors Causing Chemical Shifts

Important factors influencing chemical shift are electron density, electronegativity of neighboring groups and anisotropic induced magnetic field effects.

Electron density shields a nucleus from the external field. For example in proton NMR the electron-poor tropylium ion has its protons downfield at 9.17 ppm, those of the electron-rich cyclooctatetraenyl anion move upfield to 6.75 ppm and its dianion even more upfield to 5.56 ppm.

A nucleus in the vicinity of an electronegative atom experiences reduced electron density and the nucleus is therefore deshielded. In proton NMR of methyl halides (CH3X) the chemical shift of the methyl protons increase in the order I < Br < Cl < F from 2.16 ppm to 4.26 ppm reflecting this trend. In carbon NMR the chemical shift of the carbon nuclei increase in the same order from around –10 ppm to 70 ppm. Also when the electronegative atom is removed further away the effect diminishes until it can be observed no longer.

Anisotropic induced magnetic field effects are the result of a local induced magnetic field experienced by a nucleus resulting from circulating electrons that can either be paramagnetic when it is parallel to the applied field or diamagnetic when it is opposed to it. It is observed in alkenes where the double bond is oriented perpendicular to the external field with pi electrons likewise circulating at right angles. The induced magnetic field lines are parallel to the external field at the location of the alkene protons which therefore shift downfield to a 4.5 ppm to 7.5 ppm range. The three-dimensional space where a nucleus experiences diamagnetic shift is called the shielding zone with a cone-like shape aligned with the external field.

The protons in aromatic compounds are shifted downfield even further with a signal for benzene at 7.73 ppm as a consequence of a diamagnetic ring current.

Alkyne protons by contrast resonate at high field in a 2–3 ppm range. For alkynes the most effective orientation is the external field in parallel with electrons circulation around the triple bond. In this way the acetylenic protons are located in the cone-shaped shielding zone hence the upfield shift.

Read more about this topic:  Chemical Shift

Famous quotes containing the words factors, causing, chemical and/or shifts:

    I always knew I wanted to be somebody. I think that’s where it begins. People decide, “I want to be somebody. I want to make a contribution. I want to leave my mark here.” Then different factors contribute to how you will do that.
    Faith Ringgold (b. 1934)

    The most stringent protection of free speech would not protect a man in falsely shouting fire in a theater and causing a panic.
    Oliver Wendell Holmes, Jr. (1841–1935)

    We are close to dead. There are faces and bodies like gorged maggots on the dance floor, on the highway, in the city, in the stadium; they are a host of chemical machines who swallow the product of chemical factories, aspirin, preservatives, stimulant, relaxant, and breathe out their chemical wastes into a polluted air. The sense of a long last night over civilization is back again.
    Norman Mailer (b. 1923)

    The flattering, if arbitrary, label, First Lady of the Theatre, takes its toll. The demands are great, not only in energy but eventually in dramatic focus. It is difficult, if not impossible, for a star to occupy an inch of space without bursting seams, cramping everyone else’s style and unbalancing a play. No matter how self-effacing a famous player may be, he makes an entrance as a casual neighbor and the audience interest shifts to the house next door.
    Helen Hayes (1900–1993)