Chebyshev Polynomials - Relation Between Chebyshev Polynomials of The First and Second Kinds

Relation Between Chebyshev Polynomials of The First and Second Kinds

The Chebyshev polynomials of the first and second kind are closely related by the following equations

, where n is odd.
, where n is even.

The recurrence relationship of the derivative of Chebyshev polynomials can be derived from these relations

This relationship is used in the Chebyshev spectral method of solving differential equations.

Equivalently, the two sequences can also be defined from a pair of mutual recurrence equations:

These can be derived from the trigonometric formulae; for example, if, then

\begin{align} T_{n+1}(x) &= T_{n+1}(\cos(\vartheta)) \\ &= \cos((n + 1)\vartheta) \\ &= \cos(n\vartheta)\cos(\vartheta) - \sin(n\vartheta)\sin(\vartheta) \\ &= T_n(\cos(\vartheta))\cos(\vartheta) - U_{n-1}(\cos(\vartheta))\sin^2(\vartheta) \\ &= xT_n(x) - (1 - x^2)U_{n-1}(x). \\
\end{align}

Note that both these equations and the trigonometric equations take a simpler form if we, like some works, follow the alternate convention of denoting our Un (the polynomial of degree n) with Un+1 instead.

TurĂ¡n's inequalities for the Chebyshev polynomials are

and

Read more about this topic:  Chebyshev Polynomials

Famous quotes containing the words relation and/or kinds:

    ... a worker was seldom so much annoyed by what he got as by what he got in relation to his fellow workers.
    Mary Barnett Gilson (1877–?)

    There used to be two kinds of kisses. First when girls were kissed and deserted; second, when they were engaged. Now there’s a third kind, where the man is kissed and deserted. If Mr. Jones of the nineties bragged he’d kissed a girl, everyone knew he was through with her. If Mr. Jones of 1919 brags the same everyone knows it’s because he can’t kiss her any more. Given a decent start any girl can beat a man nowadays.
    F. Scott Fitzgerald (1896–1940)