Characteristic Polynomial - Formal Definition

Formal Definition

We start with a field K (such as the real or complex numbers) and an n×n matrix A over K. The characteristic polynomial of A, denoted by pA(t), is the polynomial defined by

pA(t) = det(t IA)

where I denotes the n-by-n identity matrix and the determinant is being taken in K, the ring of polynomials in t over K. (Some authors define the characteristic polynomial to be det(At I). That polynomial differs from the one defined here by a sign (−1)n, so it makes no difference for properties like having as roots the eigenvalues of A; however the current definition always gives a monic polynomial, whereas the alternative definition always has constant term det(A).)

Read more about this topic:  Characteristic Polynomial

Famous quotes containing the words formal and/or definition:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)