Formal Definition
We start with a field K (such as the real or complex numbers) and an n×n matrix A over K. The characteristic polynomial of A, denoted by pA(t), is the polynomial defined by
- pA(t) = det(t I − A)
where I denotes the n-by-n identity matrix and the determinant is being taken in K, the ring of polynomials in t over K. (Some authors define the characteristic polynomial to be det(A − t I). That polynomial differs from the one defined here by a sign (−1)n, so it makes no difference for properties like having as roots the eigenvalues of A; however the current definition always gives a monic polynomial, whereas the alternative definition always has constant term det(A).)
Read more about this topic: Characteristic Polynomial
Famous quotes containing the words formal and/or definition:
“On every formal visit a child ought to be of the party, by way of provision for discourse.”
—Jane Austen (17751817)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)