Characteristic Polynomial - Formal Definition

Formal Definition

We start with a field K (such as the real or complex numbers) and an n×n matrix A over K. The characteristic polynomial of A, denoted by pA(t), is the polynomial defined by

pA(t) = det(t IA)

where I denotes the n-by-n identity matrix and the determinant is being taken in K, the ring of polynomials in t over K. (Some authors define the characteristic polynomial to be det(At I). That polynomial differs from the one defined here by a sign (−1)n, so it makes no difference for properties like having as roots the eigenvalues of A; however the current definition always gives a monic polynomial, whereas the alternative definition always has constant term det(A).)

Read more about this topic:  Characteristic Polynomial

Famous quotes containing the words formal and/or definition:

    Good gentlemen, look fresh and merrily.
    Let not our looks put on our purposes,
    But bear it as our Roman actors do,
    With untired spirits and formal constancy.
    William Shakespeare (1564–1616)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)