Definition
Let PF be the domain of a prefix-free universal computable function F. The constant ΩF is then defined as
- ,
where denotes the length of a string p. This is an infinite sum which has one summand for every p in the domain of F. The requirement that the domain be prefix-free, together with Kraft's inequality, ensures that this sum converges to a real number between 0 and 1. If F is clear from context then ΩF may be denoted simply Ω, although different prefix-free universal computable functions lead to different values of Ω.
Read more about this topic: Chaitin's Constant
Famous quotes containing the word definition:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)