Chaitin's Constant - Definition

Definition

Let PF be the domain of a prefix-free universal computable function F. The constant ΩF is then defined as

,

where denotes the length of a string p. This is an infinite sum which has one summand for every p in the domain of F. The requirement that the domain be prefix-free, together with Kraft's inequality, ensures that this sum converges to a real number between 0 and 1. If F is clear from context then ΩF may be denoted simply Ω, although different prefix-free universal computable functions lead to different values of Ω.

Read more about this topic:  Chaitin's Constant

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)