Proof
The ≤ direction is obvious: we can write a program to produce x and y by concatenating a program to produce x, a program to produce y given access to x, and (whence the log term) the length of one of the programs, so that we know where to separate the two programs for x and y|x (log(K(x, y)) upper-bounds this length).
For the ≥ direction, it suffices to show that for all k,l such that k+l = K(x,y) we have that either
K(x|k,l) ≤ k + O(1) or K(y|x,k,l) ≤ l + O(1).Consider the list (a1,b1), (a2,b2), ..., (ae,be) of all pairs (a,b) produced by programs of length exactly K(x,y) . Note that this list
- contains the pair (x,y),
- can be enumerated given k and l (by running all programs of length K(x,y) in parallel),
- has at most 2K(x,y) elements (because there are at most 2n programs of length n).
First, suppose that x appears less than 2l times as first element. We can specify y given x,k,l by enumerating (a1,b1), (a2,b2), ... and then selecting (x,y) in the sub-list of pairs (x,b). By assumption, the index of (x,y) in this sub-list is less than 2l and hence, there is a program for y given x,k,l of length l + O(1). Now, suppose that x appears at least 2l times as first element. This can happen for at most 2K(x,y)-l = 2k different strings. These strings can be enumerated given k,l and hence x can be specified by its index in this enumeration. The corresponding program for x has size k + O(1). Theorem proved.
Read more about this topic: Chain Rule For Kolmogorov Complexity
Famous quotes containing the word proof:
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)
“a meek humble Man of modest sense,
Who preaching peace does practice continence;
Whose pious lifes a proof he does believe,
Mysterious truths, which no Man can conceive.”
—John Wilmot, 2d Earl Of Rochester (16471680)
“From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.”
—Johan Huizinga (18721945)