Chain Rule For Kolmogorov Complexity - Proof

Proof

The ≤ direction is obvious: we can write a program to produce x and y by concatenating a program to produce x, a program to produce y given access to x, and (whence the log term) the length of one of the programs, so that we know where to separate the two programs for x and y|x (log(K(x, y)) upper-bounds this length).

For the ≥ direction, it suffices to show that for all k,l such that k+l = K(x,y) we have that either

K(x|k,l) ≤ k + O(1) or K(y|x,k,l) ≤ l + O(1).

Consider the list (a1,b1), (a2,b2), ..., (ae,be) of all pairs (a,b) produced by programs of length exactly K(x,y) . Note that this list

  • contains the pair (x,y),
  • can be enumerated given k and l (by running all programs of length K(x,y) in parallel),
  • has at most 2K(x,y) elements (because there are at most 2n programs of length n).

First, suppose that x appears less than 2l times as first element. We can specify y given x,k,l by enumerating (a1,b1), (a2,b2), ... and then selecting (x,y) in the sub-list of pairs (x,b). By assumption, the index of (x,y) in this sub-list is less than 2l and hence, there is a program for y given x,k,l of length l + O(1). Now, suppose that x appears at least 2l times as first element. This can happen for at most 2K(x,y)-l = 2k different strings. These strings can be enumerated given k,l and hence x can be specified by its index in this enumeration. The corresponding program for x has size k + O(1). Theorem proved.


Read more about this topic:  Chain Rule For Kolmogorov Complexity

Famous quotes containing the word proof:

    The moment a man begins to talk about technique that’s proof that he is fresh out of ideas.
    Raymond Chandler (1888–1959)

    The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.
    Charles Baudelaire (1821–1867)

    The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.
    Charles Baudelaire (1821–1867)