Cerebral Cortex - Layered Structure

Layered Structure

The different cortical layers each contain a characteristic distribution of neuronal cell types and connections with other cortical and subcortical regions. One of the clearest examples of cortical layering is the Stria of Gennari in the primary visual cortex. This is a band of whiter tissue that can be observed with the naked eye in the fundus of the calcarine sulcus of the occipital lobe. The Stria of Gennari is composed of axons bringing visual information from the thalamus into layer four of visual cortex.

Staining cross-sections of the cortex to reveal the position of neuronal cell bodies and the intracortical axon tracts allowed neuroanatomists in the early 20th century to produce a detailed description of the laminar structure of the cortex in different species. After the work of Korbinian Brodmann (1909), the neurons of the cerebral cortex are grouped into six main layers, from outside (pial surface) to inside (white matter):

  1. Layer I, the Molecular layer, contains few scattered neurons and consists mainly of extensions of apical dendritic tufts of pyramidal neurons and horizontally oriented axons, as well as glial cells. Some Cajal-Retzius and spiny stellate cells can be found here. Inputs to the apical tufts are thought to be crucial for the ‘‘feedback’’ interactions in the cerebral cortex involved in associative learning and attention. While it was once thought that the input to layer I came from the cortex itself, it is now realized that layer I across the cerebral cortex mantle receives substantial input from ‘‘matrix’’ or M-type thalamus cells (in contrast to ‘‘core’’ or C-type that go to layer IV).
  2. Layer II, the External granular layer, contains small pyramidal neurons and numerous stellate neurons.
  3. Layer III, the External Pyramidal layer, contains predominantly small and medium-size pyramidal neurons, as well as non-pyramidal neurons with vertically oriented intracortical axons; layers I through III are the main target of interhemispheric corticocortical afferents, and layer III is the principal source of corticocortical efferents.
  4. Layer IV, the Internal Granular layer, contains different types of stellate and pyramidal neurons, and is the main target of thalamocortical afferents from thalamus type C neurons. as well as intra-hemispheric corticocortical afferents.
  5. Layer V, the Internal Pyramidal layer, contains large pyramidal neurons (such as the Betz cells in the primary motor cortex); it is the principal source of subcortical efferents, as such, there are large pyramidal cells which give rise to axons leaving the cortex and running down through the basal ganglia, the brain stem and the spinal cord.
  6. Layer VI, the Polymorphic or Multiform layer, contains few large pyramidal neurons and many small spindle-like pyramidal and multiform neurons; layer VI sends efferent fibers to the thalamus, establishing a very precise reciprocal interconnection between the cortex and the thalamus. These connections are both excitatory and inhibitory. Neurons send excitatory fibers to neurons in the thalamus and also from collateral to them ones via the thalamic reticular nucleus that inhibit these thalamus neurons or ones adjacent to them. Since the inhibitory output is reduced by cholinergic input to the cerebral cortex, this provides the brainstem with adjustable "gain control for the relay of lemnsical inputs".

It is important to note that the cortical layers are not simply stacked one over the other; there exist characteristic connections between different layers and neuronal types, which span all the thickness of the cortex. These cortical microcircuits are grouped into cortical columns and minicolumns, the latter of which have been proposed to be the basic functional units of cortex. In 1957, Vernon Mountcastle showed that the functional properties of the cortex change abruptly between laterally adjacent points; however, they are continuous in the direction perpendicular to the surface. Later works have provided evidence of the presence of functionally distinct cortical columns in the visual cortex (Hubel and Wiesel, 1959), auditory cortex and associative cortex.

Cortical areas that lack a layer IV are called agranular. Cortical areas that have only a rudimentary layer IV are called dysgranular. Information processing within each layer is determined by different temporal dynamics with that in the layers II/III having a slow 2 Hz oscillation while that in layer V having a fast 10–15 Hz one.

Read more about this topic:  Cerebral Cortex

Famous quotes containing the words layered and/or structure:

    Computer mediation seems to bathe action in a more conditional light: perhaps it happened; perhaps it didn’t. Without the layered richness of direct sensory engagement, the symbolic medium seems thin, flat, and fragile.
    Shoshana Zuboff (b. 1951)

    I’m a Sunday School teacher, and I’ve always known that the structure of law is founded on the Christian ethic that you shall love the Lord your God and your neighbor as yourself—a very high and perfect standard. We all know the fallibility of man, and the contentions in society, as described by Reinhold Niebuhr and many others, don’t permit us to achieve perfection.
    Jimmy Carter (James Earl Carter, Jr.)