Central Carrier - Related Results

Related Results

One can deduce some simple consequences from the above description. Suppose E and F are projections in a von Neumann algebra M.

Proposition ETF = 0 for all T in M if and only if C(E) and C(F) are orthogonal, i.e. C(E)C(F) = 0.

Proof:

ETF = 0 for all T in M.
⇔ ⊂ Ker(E).
C(F) ≤ 1 - E, by the discussion in the preceding section, where 1 is the unit in M.
E ≤ 1 - C(F).
C(E) ≤ 1 - C(F), since 1 - C(F) is a central projection that dominates E.
This proves the claim.

In turn, the following is true:

Corollary Two projections E and F in a von Neumann algebra M contain two nonzero subprojections that are Murray-von Neumann equivalent if C(E)C(F) ≠ 0.

Proof:

C(E)C(F) ≠ 0.
ETF ≠ 0 for some T in M.
ETF has polar decomposition UH for some partial isometry U and positive operator H in M.
Ran(U) = Ran(ETF) ⊂ Ran(E). Also, Ker(U) = Ran(H)⊥ = Ran(ETF)⊥ = Ker(ET*F) ⊃ Ker(F); therefore Ker(U))⊥ ⊂ Ran(F).
⇒ The two equivalent projections UU* and U*U satisfy UU*E and U*UF.

In particular, when M is a factor, then there exists a partial isometry UM such that UU*E and U*UF. Using this fact and a maximality argument, it can be deduced that the Murray-von Neumann partial order « on the family of projections in M becomes a total order if M is a factor.

Proposition (Comparability) If M is a factor, and E, FM are projections, then either E « F or F « E.

Proof:

Let ~ denote the Murray-von Neumann equivalence relation. Consider the family S whose typical element is a set { (Ei, Fi) } where the orthogonal sets {Ei} and {Fi} satisfy EiE, FiF, and Ei ~ Fi. The family S is partially ordered by inclusion and the above corollary shows it is non-empty. Zorn's lemma ensures the existence of a maximal element { (Ej, Fj) }. Maximality ensures that either E = ∑ Ej or F = ∑ Fj. The countable additivity of ~ means Ej ~ ∑ Fj. Thus the proposition holds.

Without the assumption that M is a factor, we have:

Proposition (Generalized Comparability) If M is a von Neumann algebra, and E, FM are projections, then there exists a central projection PZ(M) such that either EP « FP and F(1 - P) « E(1 - P).

Proof:

Let S be the same as in the previous proposition and again consider a maximal element { (Ej, Fj) }. Let R and S denote the "remainders": R = E - ∑ Ej and S = F - ∑ Fj. By maximality and the corollary, RTS = 0 for all T in M. So C(R)C(S) = 0. In particular R · C(S) = 0 and S · C(S) = 0. So multiplication by C(S) removes the remainder R from E while leaving S in F. More precisely, E · C(S) = (∑ Ej + R) · C(S) = (∑ Ej) · C(S) ~ (∑ Fj) · C(S) ≤ (∑ Fj + S) · C(S) = F · C(S). This shows that C(S) is the central projection with the desired properties.

Read more about this topic:  Central Carrier

Famous quotes containing the words related and/or results:

    Perhaps it is nothingness which is real and our dream which is non-existent, but then we feel think that these musical phrases, and the notions related to the dream, are nothing too. We will die, but our hostages are the divine captives who will follow our chance. And death with them is somewhat less bitter, less inglorious, perhaps less probable.
    Marcel Proust (1871–1922)

    How can you tell if you discipline effectively? Ask yourself if your disciplinary methods generally produce lasting results in a manner you find acceptable. Whether your philosophy is democratic or autocratic, whatever techniques you use—reasoning, a “star” chart, time-outs, or spanking—if it doesn’t work, it’s not effective.
    Stanley Turecki (20th century)