Central Angle - Angular Distance Formulary

Angular Distance Formulary

The angular distance can be calculated either directly as the TvL difference, or via the common coordinates (here, either SAw, SBw value set can be used):

\begin{align}{}_{\color{white}.}\\\Delta\widehat{\sigma}
&=\widehat{\sigma}_f\;-\;\widehat{\sigma}_s,\\
&=\arcsin\!\left(\sqrt{{S\!A}^2+{S\!B}^2}\,\right),\\
&\quad{}^{\mathit{(can\,only\,find\,the\,first\,quadrant,\,i.e.,\;up\,to\,90^\circ)}}\\
&=\arccos\!\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\,\Big),\\
&\quad{}^{\mathit{(not\,recommended\,for\,small\,angles,\;due\,to\,rounding\,error)}}\\
&=\arctan\!\left(\frac{\sqrt{{S\!A}^2+{S\!B}^2}}{\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)}\right),\\{}^{\color{white}.}\end{align}\,\!

and, using half-angles,

\begin{align}{}_{\color{white}.}\\
&=2\arcsin\!\left(\sqrt{\sin^2\!\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arccos\!\left(\sqrt{\cos^2\!\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arctan\!\left(\sqrt{\frac{\sin^2\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\Big(\frac{\Delta\lambda}{2}\Big)}{\cos^2\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\Big(\frac{\Delta\lambda}{2}\Big)}}\,\right).\\{}^{\color{white}.}\end{align}\,\!

It can, as well, be found by means of finding the chord length via Cartesian subtraction:

\begin{align}
&\Delta{X}=\cos(\phi_f)\cos(\lambda_f) - \cos(\phi_s)\cos(\lambda_s);\\
&\Delta{Y}=\cos(\phi_f)\sin(\lambda_f) - \cos(\phi_s)\sin(\lambda_s);\\
&\Delta{Z}=\sin(\phi_f) - \sin(\phi_s);\\
&C_h=\sqrt{(\Delta{X})^2+(\Delta{Y})^2+(\Delta{Z})^2};\\
&\Delta\widehat{\sigma}=2\arcsin\left(\frac{C_h}{2}\right).\end{align}\,\!

Also, by using Cartesian products rather than differences, the origin of the spherical cosine for sides becomes apparent:

\begin{align}
{\scriptstyle{\Pi}}X&=\cos(\phi_s)\cos(\phi_f)\cos(\lambda_s)\cos(\lambda_f);\\
{\scriptstyle{\Pi}}Y&=\cos(\phi_s)\cos(\phi_f)\sin(\lambda_s)\sin(\lambda_f);\\
{\scriptstyle{\Pi}}Z&=\sin(\phi_s)\sin(\phi_f);\\
\frac{{\scriptstyle{\Pi}}X\!\!+\!{\scriptstyle{\Pi}}Y}{\cos(\phi_s)\cos(\phi_f)}&=\cos(\lambda_s)\cos(\lambda_f)+\sin(\lambda_s)\sin(\lambda_f)=\cos(\Delta\lambda);\\
\Delta\widehat{\sigma}&=\arccos\Big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y+{\scriptstyle{\Pi}}Z\Big)
=\arccos\Big({\scriptstyle{\Pi}}Z+\big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y\big)\Big),\\
&=\arccos\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\Big).\end{align}\,\!

There is also a logarithmical form:

Read more about this topic:  Central Angle

Famous quotes containing the word distance:

    I do believe that the outward and the inward life correspond; that if any should succeed to live a higher life, others would not know of it; that difference and distance are one. To set about living a true life is to go on a journey to a distant country, gradually to find ourselves surrounded by new scenes and men; and as long as the old are around me, I know that I am not in any true sense living a new or a better life.
    Henry David Thoreau (1817–1862)