Central Angle - Angular Distance Formulary

Angular Distance Formulary

The angular distance can be calculated either directly as the TvL difference, or via the common coordinates (here, either SAw, SBw value set can be used):

\begin{align}{}_{\color{white}.}\\\Delta\widehat{\sigma}
&=\widehat{\sigma}_f\;-\;\widehat{\sigma}_s,\\
&=\arcsin\!\left(\sqrt{{S\!A}^2+{S\!B}^2}\,\right),\\
&\quad{}^{\mathit{(can\,only\,find\,the\,first\,quadrant,\,i.e.,\;up\,to\,90^\circ)}}\\
&=\arccos\!\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\,\Big),\\
&\quad{}^{\mathit{(not\,recommended\,for\,small\,angles,\;due\,to\,rounding\,error)}}\\
&=\arctan\!\left(\frac{\sqrt{{S\!A}^2+{S\!B}^2}}{\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)}\right),\\{}^{\color{white}.}\end{align}\,\!

and, using half-angles,

\begin{align}{}_{\color{white}.}\\
&=2\arcsin\!\left(\sqrt{\sin^2\!\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arccos\!\left(\sqrt{\cos^2\!\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\left(\frac{\Delta\lambda}{2}\right)}\,\right),\\
&=2\arctan\!\left(\sqrt{\frac{\sin^2\left(\frac{\phi_f-\phi_s}{2}\right)+\cos(\phi_s)\cos(\phi_f)\sin^2\Big(\frac{\Delta\lambda}{2}\Big)}{\cos^2\left(\frac{\phi_f-\phi_s}{2}\right)-\cos(\phi_s)\cos(\phi_f)\sin^2\!\Big(\frac{\Delta\lambda}{2}\Big)}}\,\right).\\{}^{\color{white}.}\end{align}\,\!

It can, as well, be found by means of finding the chord length via Cartesian subtraction:

\begin{align}
&\Delta{X}=\cos(\phi_f)\cos(\lambda_f) - \cos(\phi_s)\cos(\lambda_s);\\
&\Delta{Y}=\cos(\phi_f)\sin(\lambda_f) - \cos(\phi_s)\sin(\lambda_s);\\
&\Delta{Z}=\sin(\phi_f) - \sin(\phi_s);\\
&C_h=\sqrt{(\Delta{X})^2+(\Delta{Y})^2+(\Delta{Z})^2};\\
&\Delta\widehat{\sigma}=2\arcsin\left(\frac{C_h}{2}\right).\end{align}\,\!

Also, by using Cartesian products rather than differences, the origin of the spherical cosine for sides becomes apparent:

\begin{align}
{\scriptstyle{\Pi}}X&=\cos(\phi_s)\cos(\phi_f)\cos(\lambda_s)\cos(\lambda_f);\\
{\scriptstyle{\Pi}}Y&=\cos(\phi_s)\cos(\phi_f)\sin(\lambda_s)\sin(\lambda_f);\\
{\scriptstyle{\Pi}}Z&=\sin(\phi_s)\sin(\phi_f);\\
\frac{{\scriptstyle{\Pi}}X\!\!+\!{\scriptstyle{\Pi}}Y}{\cos(\phi_s)\cos(\phi_f)}&=\cos(\lambda_s)\cos(\lambda_f)+\sin(\lambda_s)\sin(\lambda_f)=\cos(\Delta\lambda);\\
\Delta\widehat{\sigma}&=\arccos\Big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y+{\scriptstyle{\Pi}}Z\Big)
=\arccos\Big({\scriptstyle{\Pi}}Z+\big({\scriptstyle{\Pi}}X+{\scriptstyle{\Pi}}Y\big)\Big),\\
&=\arccos\Big(\sin(\phi_s)\sin(\phi_f)+\cos(\phi_s)\cos(\phi_f)\cos(\Delta\lambda)\Big).\end{align}\,\!

There is also a logarithmical form:

Read more about this topic:  Central Angle

Famous quotes containing the word distance:

    Small, black, as flies hanging in heat, the Boys,
    Until the distance throws them forth, their hum
    Bulges to thunder held by calf and thigh.
    Thom Gunn (b. 1929)