Cellular Automaton - Overview

Overview

One way to simulate a two-dimensional cellular automaton is with an infinite sheet of graph paper along with a set of rules for the cells to follow. Each square is called a "cell" and each cell has two possible states, black and white. The neighborhood of a cell is the nearby, usually adjacent, cells. The two most common types of neighborhoods are the von Neumann neighborhood and the Moore neighborhood. The former, named after the founding CA theorist, consists the four orthogonally adjacent cells. The latter includes the von Neumann neighborhood as well as the four remaining cells surrounding the cell whose state is to be calculated. For such a cell and its Moore neighborhood, there are 512 (= 29) possible patterns. For each of the 512 possible patterns, the rule table would state whether the center cell will be black or white on the next time interval. Conway's Game of Life is a popular version of this model. Another common neighborhood type is the extended von Neumann neighborhood, which includes the two closest cells in each orthogonal direction, for a total of eight. The general equation for such a system of rules is kks, where k is the number of possible states for a cell, and s is the number of neighboring cells (including the cell to be calculated itself) used to determine the cell's next state. Thus, in the two dimensional system with a Moore neighborhood, the total number of automata possible would be 229, or 1.34×10154.

It is usually assumed that every cell in the universe starts in the same state, except for a finite number of cells in other states; the assignment of state values is called a configuration. More generally, it is sometimes assumed that the universe starts out covered with a periodic pattern, and only a finite number of cells violate that pattern. The latter assumption is common in one-dimensional cellular automata.

Cellular automata are often simulated on a finite grid rather than an infinite one. In two dimensions, the universe would be a rectangle instead of an infinite plane. The obvious problem with finite grids is how to handle the cells on the edges. How they are handled will affect the values of all the cells in the grid. One possible method is to allow the values in those cells to remain constant. Another method is to define neighborhoods differently for these cells. One could say that they have fewer neighbors, but then one would also have to define new rules for the cells located on the edges. These cells are usually handled with a toroidal arrangement: when one goes off the top, one comes in at the corresponding position on the bottom, and when one goes off the left, one comes in on the right. (This essentially simulates an infinite periodic tiling, and in the field of partial differential equations is sometimes referred to as periodic boundary conditions.) This can be visualized as taping the left and right edges of the rectangle to form a tube, then taping the top and bottom edges of the tube to form a torus (doughnut shape). Universes of other dimensions are handled similarly. This is done in order to solve boundary problems with neighborhoods, but another advantage of this system is that it is easily programmable using modular arithmetic functions. For example, in a 1-dimensional cellular automaton like the examples below, the neighborhood of a cell xit is {xi−1t−1, xit−1, xi+1t−1}, where t is the time step (vertical), and i is the index (horizontal) in one generation.

Read more about this topic:  Cellular Automaton