Cellular Approximation - Idea of Proof

Idea of Proof

The proof can be given by induction after n, with the statement that f is cellular on the skeleton Xn. For the base case n=0, notice that every path-component of Y must contain a 0-cell. The image under f of a 0-cell of X can thus be connected to a 0-cell of Y by a path, but this gives a homotopy from f to a map, which is cellular on the 0-skeleton of X.

Assume inductively that f is cellular on the (n − 1)-skeleton of X, and let en be an n-cell of X. The closure of en is compact in X, being the image of the characteristic map of the cell, and hence the image of the closure of en under f is also compact in Y. Then it is a general result of CW-complexes that any compact subspace of a CW-complex meets (that is, intersects non-trivially) only finitely many cells of the complex. Thus f(en) meets at most finitely many cells of Y, so we can take to be a cell of highest dimension meeting f(en). If, the map f is already cellular on en, since in this case only cells of the n-skeleton of Y meets f(en), so we may assume that k > n. It is then a technical, non-trivial result (see Hatcher) that the restriction of f to can be homotoped relative to Xn-1 to a map missing a point pek. Since Yk − {p} deformation retracts onto the subspace Yk-ek, we can further homotope the restriction of f to to a map, say, g, with the property that g(en) misses the cell ek of Y, still relative to Xn-1. Since f(en) met only finitely many cells of Y to begin with, we can repeat this process finitely many times to make miss all cells of Y of dimension larger than n.

We repeat this process for every n-cell of X, fixing cells of the subcomplex A on which f is already cellular, and we thus obtain a homotopy (relative to the (n − 1)-skeleton of X and the n-cells of A) of the restriction of f to Xn to a map cellular on all cells of X of dimension at most n. Using then the homotopy extension property to extend this to a homotopy on all of X, and patching these homotopies together, will finish the proof. For details, consult Hatcher.

Read more about this topic:  Cellular Approximation

Famous quotes containing the words idea of, idea and/or proof:

    Cats are the ultimate narcissists. You can tell this because of all the time they spend on personal grooming. Dogs aren’t like this. A dog’s idea of personal grooming is to roll in a dead fish. Dogs spend their time thinking about doing good deeds for their masters, or sleeping.
    James Gorman (b. 1949)

    The fatal metaphor of progress, which means leaving things behind us, has utterly obscured the real idea of growth, which means leaving things inside us.
    Gilbert Keith Chesterton (1874–1936)

    Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?
    Henry David Thoreau (1817–1862)