Conformal Map
In complex analysis, the Cayley transform is a mapping of the complex plane to itself, given by
This is a linear fractional transformation, and can be extended to an automorphism of the Riemann sphere (the complex plane augmented with a point at infinity).
Of particular note are the following facts:
- W maps the upper half plane of C conformally onto the unit disc of C.
- W maps the real line R injectively into the unit circle T (complex numbers of absolute value 1). The image of R is T with 1 removed.
- W maps the upper imaginary axis i [0, ∞) bijectively onto the half-open interval [−1, +1).
- W maps 0 to −1.
- W maps the point at infinity to 1.
- W maps −i to the point at infinity (so W has a pole at −i).
- W maps −1 to i.
- W maps both 1⁄2(−1 + √3)(−1 + i) and 1⁄2(1 + √3)(1 − i) to themselves.
Read more about this topic: Cayley Transform
Famous quotes containing the word map:
“You can always tell a Midwestern couple in Europe because they will be standing in the middle of a busy intersection looking at a wind-blown map and arguing over which way is west. European cities, with their wandering streets and undisciplined alleys, drive Midwesterners practically insane.”
—Bill Bryson (b. 1951)