Cauchy's Integral Theorem - Proof

Proof

If one assumes that the partial derivatives of a holomorphic function are continuous, the Cauchy integral theorem can be proved as a direct consequence of Green's theorem and the fact that the real and imaginary parts of must satisfy the Cauchy–Riemann equations in the region bounded by, and moreover in the open neighborhood U of this region. Cauchy provided this proof, but it was later proved by Goursat without requiring techniques from vector calculus, or the continuity of partial derivatives.

We can break the integrand, as well as the differential into their real and imaginary components:

In this case we have

By Green's theorem, we may then replace the integrals around the closed contour with an area integral throughout the domain that is enclosed by as follows:

However, being the real and imaginary parts of a function analytic in the domain, and must satisfy the Cauchy–Riemann equations there:

We therefore find that both integrands (and hence their integrals) are zero

This gives the desired result

Read more about this topic:  Cauchy's Integral Theorem

Famous quotes containing the word proof:

    Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other two—a proof of the decline of that country.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    In the reproof of chance
    Lies the true proof of men.
    William Shakespeare (1564–1616)