In A Metric Space
To define Cauchy sequences in any metric space X, the absolute value is replaced by the distance (where d : X × X → R with some specific properties, see Metric (mathematics)) between and .
Formally, given a metric space (X, d), a sequence
is Cauchy, if for every positive real number ε > 0 there is a positive integer N such that for all natural numbers m,n > N, the distance
Roughly speaking, the terms of the sequence are getting closer and closer together in a way that suggests that the sequence ought to have a limit in X. Nonetheless, such a limit does not always exist within X.
Read more about this topic: Cauchy Sequence
Famous quotes containing the word space:
“True spoiling is nothing to do with what a child owns or with amount of attention he gets. he can have the major part of your income, living space and attention and not be spoiled, or he can have very little and be spoiled. It is not what he gets that is at issue. It is how and why he gets it. Spoiling is to do with the family balance of power.”
—Penelope Leach (20th century)