Cauchy Elastic Material - Mathematical Definition

Mathematical Definition

Formally, a material is said to be Cauchy-elastic if the Cauchy stress tensor is a function of the strain tensor (deformation gradient) alone:

This definition assumes that the effect of temperature can be ignored, and the body is homogeneous. This is the constitutive equation for a Cauchy-elastic material.

Note that the function depends on the choice of reference configuration. Typically, the reference configuration is taken as the relaxed (zero-stress) configuration, but need not be.

Frame indifference requires that the constitutive relation should not change when the location of the observer changes. Therefore the constitutive equation for another arbitrary observer can be written . Knowing that the Cauchy stress tensor and the deformation gradient are objective quantities, one can write:

 \begin{align} & \boldsymbol{\sigma}^* &=& \mathcal{G}(\boldsymbol{F}^*) \\ \Rightarrow & \boldsymbol{R}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{R}^T &=& \mathcal{G}(\boldsymbol{R}\cdot\boldsymbol{F}) \\ \Rightarrow & \boldsymbol{R}\cdot\mathcal{G}(\boldsymbol{F})\cdot\boldsymbol{R}^T &=& \mathcal{G}(\boldsymbol{R}\cdot\boldsymbol{F})
\end{align}

where is a proper orthogonal tensor.

The above is a condition that the constitutive law has to respect to make sure that the response of the material will be independent of the observer. Similar conditions can be derived for constitutive laws relating the deformation gradient to the first or second Piola-Kirchhoff stress tensor.

Read more about this topic:  Cauchy Elastic Material

Famous quotes containing the words mathematical and/or definition:

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)