Cauchy Elastic Material - Mathematical Definition

Mathematical Definition

Formally, a material is said to be Cauchy-elastic if the Cauchy stress tensor is a function of the strain tensor (deformation gradient) alone:

This definition assumes that the effect of temperature can be ignored, and the body is homogeneous. This is the constitutive equation for a Cauchy-elastic material.

Note that the function depends on the choice of reference configuration. Typically, the reference configuration is taken as the relaxed (zero-stress) configuration, but need not be.

Frame indifference requires that the constitutive relation should not change when the location of the observer changes. Therefore the constitutive equation for another arbitrary observer can be written . Knowing that the Cauchy stress tensor and the deformation gradient are objective quantities, one can write:

 \begin{align} & \boldsymbol{\sigma}^* &=& \mathcal{G}(\boldsymbol{F}^*) \\ \Rightarrow & \boldsymbol{R}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{R}^T &=& \mathcal{G}(\boldsymbol{R}\cdot\boldsymbol{F}) \\ \Rightarrow & \boldsymbol{R}\cdot\mathcal{G}(\boldsymbol{F})\cdot\boldsymbol{R}^T &=& \mathcal{G}(\boldsymbol{R}\cdot\boldsymbol{F})
\end{align}

where is a proper orthogonal tensor.

The above is a condition that the constitutive law has to respect to make sure that the response of the material will be independent of the observer. Similar conditions can be derived for constitutive laws relating the deformation gradient to the first or second Piola-Kirchhoff stress tensor.

Read more about this topic:  Cauchy Elastic Material

Famous quotes containing the words mathematical and/or definition:

    As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.
    Blaise Pascal (1623–1662)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)