Cauchy Elastic Material - Isotropic Cauchy-elastic Materials

Isotropic Cauchy-elastic Materials

For an isotropic material the Cauchy stress tensor can be expressed as a function of the left Cauchy-Green tensor . The constitutive equation may then be written:

In order to find the restriction on which will ensure the principle of material frame-indifference, one can write:

\ \begin{array}{rrcl} & \boldsymbol{\sigma}^* &=& \mathcal{H}(\boldsymbol{B}^*) \\
\Rightarrow & \boldsymbol{R}\cdot \boldsymbol{\sigma}\cdot \boldsymbol{R}^T &=& \mathcal{H}(\boldsymbol{F}^*\cdot(\boldsymbol{F}^*)^T) \\
\Rightarrow & \boldsymbol{R}\cdot \mathcal{H}(\boldsymbol{B}) \cdot\boldsymbol{R}^T &=& \mathcal{H}(\boldsymbol{R}\cdot\boldsymbol{F}\cdot\boldsymbol{F}^T\cdot\boldsymbol{R}^T) \\
\Rightarrow & \boldsymbol{R}\cdot \mathcal{H}(\boldsymbol{B})\cdot \boldsymbol{R}^T &=& \mathcal{H}(\boldsymbol{R}\cdot\boldsymbol{B}\cdot\boldsymbol{R}^T). \end{array}

A constitutive equation that respects the above condition is said to be isotropic.

Read more about this topic:  Cauchy Elastic Material

Famous quotes containing the word materials:

    If our entertainment culture seems debased and unsatisfying, the hope is that our children will create something of greater worth. But it is as if we expect them to create out of nothing, like God, for the encouragement of creativity is in the popular mind, opposed to instruction. There is little sense that creativity must grow out of tradition, even when it is critical of that tradition, and children are scarcely being given the materials on which their creativity could work
    C. John Sommerville (20th century)