2-category Structure
The set of morphisms (monotonic functions) between two preorders actually has more structure than that of a set. It can be made into a preordered set itself by the pointwise relation:
- (f ≤ g) ⇔ (∀ x, f(x) ≤ g(x))
This preordered set can in turn be considered as a category, which makes Ord a 2-category (the additional axioms of a 2-category trivially hold because any equation of parallel morphisms is true in a posetal category).
With this 2-category structure, a pseudofunctor F from a category C to Ord is given by the same data as a 2-functor, but has the relaxed properties:
- ∀ x ∈ F(A), F (idA) (x) ≃ x
- ∀ x ∈ F(A), F (g ∘ f) (x) ≃ F(g) (F(f) x)
where x ≃ y means x ≤ y ∧ y ≤ x.
Read more about this topic: Category Of Preordered Sets
Famous quotes containing the word structure:
“I really do inhabit a system in which words are capable of shaking the entire structure of government, where words can prove mightier than ten military divisions.”
—Václav Havel (b. 1936)