Category of Preordered Sets - 2-category Structure

2-category Structure

The set of morphisms (monotonic functions) between two preorders actually has more structure than that of a set. It can be made into a preordered set itself by the pointwise relation:

(f ≤ g) ⇔ (∀ x, f(x) ≤ g(x))

This preordered set can in turn be considered as a category, which makes Ord a 2-category (the additional axioms of a 2-category trivially hold because any equation of parallel morphisms is true in a posetal category).

With this 2-category structure, a pseudofunctor F from a category C to Ord is given by the same data as a 2-functor, but has the relaxed properties:

∀ x ∈ F(A), F (idA) (x) ≃ x
∀ x ∈ F(A), F (g ∘ f) (x) ≃ F(g) (F(f) x)

where x ≃ y means x ≤ y ∧ y ≤ x.

Read more about this topic:  Category Of Preordered Sets

Famous quotes containing the word structure:

    There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.
    Donald Davidson (b. 1917)