Catastrophic Optical Damage - Causes and Mechanisms

Causes and Mechanisms

At the edge of a diode laser, where light is emitted, a mirror is traditionally formed by cleaving the semiconductor wafer to form a specularly reflecting plane. This approach is facilitated by the weakness of the crystallographic plane in III-V semiconductor crystals (such as GaAs, InP, GaSb, etc.) compared to other planes. A scratch made at the edge of the wafer and a slight bending force causes a nearly atomically perfect mirror-like cleavage plane to form and propagate in a straight line across the wafer.

But it so happens that the atomic states at the cleavage plane are altered (compared to their bulk properties within the crystal) by the termination of the perfectly periodic lattice at that plane. Surface states at the cleaved plane have energy levels within the (otherwise forbidden) band gap of the semiconductor.

The absorbed light causes generation of electron-hole pairs. These can lead to breaking of chemical bonds on the crystal surface followed by oxidation, or to release of heat by nonradiative recombination. The oxidized surface then shows increased absorption of the laser light, which further accelerates its degradation. The oxidation is especially problematic for semiconductor layers containing aluminium.

Essentially, as a result when light propagates through the cleavage plane and transits to free space from within the semiconductor crystal, a fraction of the light energy is absorbed by the surface states whence it is converted to heat by phonon-electron interactions. This heats the cleaved mirror. In addition the mirror may heat simply because the edge of the diode laser—which is electrically pumped—is in less-than-perfect contact with the mount that provides a path for heat removal. The heating of the mirror causes the band gap of the semiconductor to shrink in the warmer areas. The band gap shrinkage brings more electronic band-to-band transitions into alignment with the photon energy causing yet more absorption. This is thermal runaway, a form of positive feedback, and the result can be melting of the facet, known as catastrophic optical damage, or COD.

Deterioration of the laser facets with aging and effects of the environment (erosion by water, oxygen, etc.) increases light absorption by the surface, and decreases the COD threshold. A sudden catastrophic failure of the laser due to COD then can occur after many thousands hours in service.

Read more about this topic:  Catastrophic Optical Damage