Classification
Cataclysmic variables are subdivided into several smaller groups, often named after a bright prototype star characteristic of the class. In some cases the magnetic field of the white dwarf is strong enough to disrupt the inner accretion disk or even prevent disk formation altogether. Magnetic systems often show strong and variable polarization in their optical light, and are therefore sometimes called polars; these often exhibit small-amplitude brightness fluctuations at what's presumed to be the period of rotation of the white dwarf
(Classical) novae | These cataclysmic variables have very large outbursts, of 6 to 19 magnitudes, caused by thermonuclear fusion of material accreted onto the white dwarf. | ||||||
Recurrent novae | These have outbursts of about 4 to 9 magnitudes, repeating every 10 to 80 years. Examples include T Pyxidis and RS Ophiuchi. | ||||||
Dwarf novae | Dwarf novae, or U Geminorum stars, are cataclysmic variables which are observed to brighten repeatedly, though by a smaller amount than classical novae.
|
||||||
Polars |
|
||||||
VY Sculptoris | These are stars which occasionally drop in brightness by more than one magnitude, with very occasional dwarf-nova-type outbursts during the dim state. They may be a subclass of polars. | ||||||
AM Canum Venaticorum | These are cataclysmic variables both of whose components are white dwarfs; the accretion disc is composed primarily of helium, and they are of interest as sources of gravitational waves. | ||||||
SW Sextantis | These are like dwarf novae but have the accretion disc in a steady state, so don't show outbursts; the disc emits non-uniformly. They are usually also eclipsing variables, though this appears to be a selection artefact. |
There are over 1600 known CV systems. The catalog was frozen as of 1 February 2006 though more are discovered each year.
Read more about this topic: Cataclysmic Variable Star
Related Phrases
Related Words