Casimir Invariant - Definition

Definition

Suppose that g is an n−dimensional semisimple Lie algebra with basis {X1, ..., Xn}. Moreover let {X1, ..., Xn} be the dual basis of g with respect to a fixed invariant bilinear form (e.g. the Killing form) on g. The Casimir element Ω is an element of the universal enveloping algebra U(g) given by the formula

Although the definition of the Casimir element refers to a particular choice of basis in the Lie algebra, it is easy to show that the resulting element Ω is independent of this choice. Moreover, the invariance of the bilinear form used in the definition implies that the Casimir element commutes with all elements of the Lie algebra g, and hence lies in the center of the universal enveloping algebra U(g).

Given any representation ρ of g on a vector space V, possibly infinite-dimensional, the corresponding Casimir invariant is ρ(Ω), the linear operator on V given by the formula

A special case of this construction plays an important role in differential geometry and global analysis. Suppose that a connected Lie group G with the Lie algebra g acts on a differentiable manifold M, then elements of g are represented by first order differential operators on M. The representation ρ is on the space of smooth functions on M. In this situation the Casimir invariant is the G–invariant second order differential operator on M defined by the above formula.

More general Casimir invariants may also be defined, commonly occurring in the study of pseudo-differential operators in Fredholm theory.

Read more about this topic:  Casimir Invariant

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)