Cartan's Equivalence Method - Overview of Cartan's Method

Overview of Cartan's Method

Specifically, suppose that M and N are a pair of manifolds each carrying a G-structure for a structure group G. This amounts to giving a special class of coframes on M and N. Cartan's method addresses the question of whether there exists a local diffeomorphism φ:MN under which the G-structure on N pulls back to the given G-structure on M. An equivalence problem has been "solved" if one can give a complete set of structural invariants for the G-structure: meaning that such a diffeomorphism exists if and only if all of the structural invariants agree in a suitably defined sense.

Explicitly, local systems of one-forms θi and γi are given on M and N, respectively, which span the respective cotangent bundles (i.e., are coframes). The question is whether there is a local diffeomorphism φ:MN such that the pullback of the coframe on N satisfies

(1)

where the coefficient g is a function on M taking values in the Lie group G. For example, if M and N are Riemannian manifolds, then G=O(n) is the orthogonal group and θi and γi are orthonormal coframes of M and N respectively. The question of whether two Riemannian manifolds are isometric is then a question of whether there exists a diffeomorphism φ satisfying (1).

The first step in the Cartan method is to express the pullback relation (1) in as invariant a way as possible through the use of a "prolongation". The most economical way to do this is to use a G-subbundle PM of the principal bundle of linear coframes LM, although this approach can lead to unnecessary complications when performing actual calculations. In particular, later on this article uses a different approach. But for the purposes of an overview, it is convenient to stick with the principal bundle viewpoint.

The second step is to use the diffeomorphism invariance of the exterior derivative to try to isolate any other higher-order invariants of the G-structure. Basically one obtains a connection in the principal bundle PM, with some torsion. The components of the connection and of the torsion are regarded as invariants of the problem.

The third step is that if the remaining torsion coefficients are not constant in the fibres of the principal bundle PM, it is often possible (although sometimes difficult), to normalize them by setting them equal to a convenient constant value and solving these normalization equations, thereby reducing the effective dimension of the Lie group G. If this occurs, one goes back to step one, now having a Lie group of one lower dimension to work with.

Read more about this topic:  Cartan's Equivalence Method

Famous quotes containing the word method:

    The method of scientific investigation is nothing but the expression of the necessary mode of working of the human mind. It is simply the mode in which all phenomena are reasoned about, rendered precise and exact.
    Thomas Henry Huxley (1825–95)