Examples
Cartan's criteria fail in characteristic p>0; for example:
- the Lie algebra SLp(k) is simple if k has characteristic not 2 and has vanishing Killing form, though it does have a nonzero invariant bilinear form given by (a,b) = Tr(ab).
- the Lie algebra with basis an for n∈Z/pZ and bracket = (i−j)ai+j is simple for p>2 but has no nonzero invariant bilinear form.
- If k has characteristic 2 then the semidirect product gl2(k).k2 is a solvable Lie algebra, but the Killing form is not identically zero on its derived algebra sl2(k).k2.
If a finite dimensional Lie algebra is nilpotent, then the Killing form is identically zero (and more generally the Killing form vanishes on any nilpotent ideal). The converse is false: there are non-nilpotent Lie algebras whose Killing form vanishes. An example is given by the semidirect product of an abelian Lie algebra V with a 1-dimensional Lie algebra acting on V as an endomorphism b such that b is not nilpotent and Tr(b2)=0.
In characteristic 0, every reductive Lie algebra (one that is a sum of abelian and simple Lie algebras) has a non-degenerate invariant symmetric bilinear form. However the converse is false: a Lie algebra with a non-degenerate invariant symmetric bilinear form need not be a sum of simple and abelian Lie algebras. A typical counterexample is G = L/tnL where n>1, L is a simple complex Lie algebra with a bilinear form (,), and the bilinear form on G is given by taking the coefficient of tn−1 of the C-valued bilinear form on G induced by the form on L. The bilinear form is non-degenerate, but the Lie algebra is not a sum of simple and abelian Lie algebras.
Read more about this topic: Cartan's Criterion
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)